Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(12): 126502, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38579201

RESUMEN

LiCu_{3}O_{3} is an antiferromagnetic mixed valence cuprate where trilayers of edge-sharing Cu(II)O (3d^{9}) are sandwiched in between planes of Cu(I) (3d^{10}) ions, with Li stochastically substituting Cu(II). Angle-resolved photoemission spectroscopy (ARPES) and density functional theory reveal two insulating electronic subsystems that are segregated in spite of sharing common oxygen atoms: a Cu d_{z^{2}}/O p_{z} derived valence band (VB) dispersing on the Cu(I) plane, and a Cu 3d_{x^{2}-y^{2}}/O 2p_{x,y} derived Zhang-Rice singlet (ZRS) band dispersing on the Cu(II)O planes. First-principle analysis shows the Li substitution to stabilize the insulating ground state, but only if antiferromagnetic correlations are present. Li further induces substitutional disorder and a 2D electron glass behavior in charge transport, reflected in a large 530 meV Coulomb gap and a linear suppression of VB spectral weight at E_{F} that is observed by ARPES. Surprisingly, the disorder leaves the Cu(II)-derived ZRS largely unaffected. This indicates a local segregation of Li and Cu atoms onto the two separate corner-sharing Cu(II)O_{2} sub-lattices of the edge-sharing Cu(II)O planes, and highlights the ubiquitous resilience of the entangled two hole ZRS entity against impurity scattering.

2.
J Appl Crystallogr ; 55(Pt 5): 1219-1231, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36249507

RESUMEN

Co-Zn-Mn chiral cubic magnets display versatile magnetic skyrmion phases, including equilibrium phases stable far above and far below room temperature, and the facile creation of robust far-from-equilibrium skyrmion states. In this system, compositional disorder and magnetic frustration are key ingredients that have profound effects on the chiral magnetism. Reported here are studies of the magnetism in Co6.75Zn6.75Mn6.5 by magnetometry, small-angle neutron scattering (SANS), magnetic diffuse neutron scattering and Lorentz transmission electron microscopy (LTEM). While features in magnetometry and LTEM often give standard indications for skyrmion formation, they are not readily observed from the measurements on this system. Instead, skyrmion lattice correlations are only revealed by SANS, and they are found to form an orientationally disordered structure in a minority fraction of the sample. The majority fraction of the sample always displays orientationally disordered helical spin correlations, which undergo further disordering along the radial direction on cooling below the critical temperature (T c ≃ 102 K). The near-complete suppression of the skyrmion phase, and the process of disordering on cooling, are attributed to competing magnetic interactions that dominate over the ferromagnetic interaction expected to favour chiral magnetism in this system. These competing interactions start to develop above T c and become further enhanced towards low temperatures. The present observations of co-existing and disordered magnetic correlations over multiple length scales are not unique to Co6.75Zn6.75Mn6.5 but are seemingly common to the family of Co-Zn-Mn compounds with finite Mn, and their accurate description presents a challenge for theoretical modelling. In addition, this study highlights a need for neutron instrumentation capable of the comprehensive measurement of magnetic correlations over expanded ranges of momentum transfer in such multiple-length-scale magnets.

3.
Nature ; 592(7854): 370-375, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33854247

RESUMEN

At the liquid-gas phase transition in water, the density has a discontinuity at atmospheric pressure; however, the line of these first-order transitions defined by increasing the applied pressure terminates at the critical point1, a concept ubiquitous in statistical thermodynamics2. In correlated quantum materials, it was predicted3 and then confirmed experimentally4,5 that a critical point terminates the line of Mott metal-insulator transitions, which are also first-order with a discontinuous charge carrier density. In quantum spin systems, continuous quantum phase transitions6 have been controlled by pressure7,8, applied magnetic field9,10 and disorder11, but discontinuous quantum phase transitions have received less attention. The geometrically frustrated quantum antiferromagnet SrCu2(BO3)2 constitutes a near-exact realization of the paradigmatic Shastry-Sutherland model12-14 and displays exotic phenomena including magnetization plateaus15, low-lying bound-state excitations16, anomalous thermodynamics17 and discontinuous quantum phase transitions18,19. Here we control both the pressure and the magnetic field applied to SrCu2(BO3)2 to provide evidence of critical-point physics in a pure spin system. We use high-precision specific-heat measurements to demonstrate that, as in water, the pressure-temperature phase diagram has a first-order transition line that separates phases with different local magnetic energy densities, and that terminates at an Ising critical point. We provide a quantitative explanation of our data using recently developed finite-temperature tensor-network methods17,20-22. These results further our understanding of first-order quantum phase transitions in quantum magnetism, with potential applications in materials where anisotropic spin interactions produce the topological properties23,24 that are useful for spintronic applications.

4.
Phys Rev Lett ; 125(21): 216402, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33274982

RESUMEN

Trigonal tellurium, a small-gap semiconductor with pronounced magneto-electric and magneto-optical responses, is among the simplest realizations of a chiral crystal. We have studied by spin- and angle-resolved photoelectron spectroscopy its unconventional electronic structure and unique spin texture. We identify Kramers-Weyl, composite, and accordionlike Weyl fermions, so far only predicted by theory, and show that the spin polarization is parallel to the wave vector along the lines in k space connecting high-symmetry points. Our results clarify the symmetries that enforce such spin texture in a chiral crystal, thus bringing new insight in the formation of a spin vectorial field more complex than the previously proposed hedgehog configuration. Our findings thus pave the way to a classification scheme for these exotic spin textures and their search in chiral crystals.

5.
Phys Rev Lett ; 125(13): 137202, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33034489

RESUMEN

In the three-dimensional (3D) Heisenberg model, topological point defects known as spin hedgehogs behave as emergent magnetic monopoles, i.e., quantized sources and sinks of gauge fields that couple strongly to conduction electrons, and cause unconventional transport responses such as the gigantic Hall effect. We observe a dramatic change in the Hall effect upon the transformation of a spin hedgehog crystal in a chiral magnet MnGe through combined measurements of magnetotransport and small-angle neutron scattering (SANS). At low temperatures, well-defined SANS peaks and a negative Hall signal are each consistent with expectations for a static hedgehog lattice. In contrast, a positive Hall signal takes over when the hedgehog lattice fluctuates at higher temperatures, with a diffuse SANS signal observed upon decomposition of the hedgehog lattice. Our approach provides a simple way to both distinguish and disentangle the roles of static and dynamic emergent monopoles on the augmented Hall motion of conduction electrons.

6.
Phys Rev Lett ; 124(18): 187002, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32441965

RESUMEN

We use resonant inelastic x-ray scattering to investigate charge-stripe correlations in La_{1.675}Eu_{0.2}Sr_{0.125}CuO_{4}. By differentiating elastic from inelastic scattering, it is demonstrated that charge-stripe correlations precede both the structural low-temperature tetragonal phase and the transport-defined pseudogap onset. The scattering peak amplitude from charge stripes decays approximately as T^{-2} towards our detection limit. The in-plane integrated intensity, however, remains roughly temperature independent. Therefore, although the incommensurability shows a remarkably large increase at high temperature, our results are interpreted via a single scattering constituent. In fact, direct comparison to other stripe-ordered compounds (La_{1.875}Ba_{0.125}CuO_{4}, La_{1.475}Nd_{0.4}Sr_{0.125}CuO_{4}, and La_{1.875}Sr_{0.125}CuO_{4}) suggests a roughly constant integrated scattering intensity across all these compounds. Our results therefore provide a unifying picture for the charge-stripe ordering in La-based cuprates. As charge correlations in La_{1.675}Eu_{0.2}Sr_{0.125}CuO_{4} extend beyond the low-temperature tetragonal and pseudogap phase, their emergence heralds a spontaneous symmetry breaking in this compound.

7.
Phys Rev Lett ; 124(7): 077202, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32142335

RESUMEN

Establishing the physical mechanism governing exchange interactions is fundamental for exploring exotic phases such as quantum spin liquids in real materials. In this Letter, we address exchange interactions in Sr_{2}CuTe_{x}W_{1-x}O_{6}, a series of double perovskites that realize a spin-1/2 square lattice and are suggested to harbor a quantum spin liquid ground state arising from the random distribution of nonmagnetic ions. Our ab initio multireference configuration interaction calculations show that replacing Te atoms with W atoms changes the dominant couplings from nearest to next-nearest neighbor due to the crucial role of unoccupied states of the nonmagnetic ions in the super-superexchange mechanism. Combined with spin-wave theory simulations, our calculated exchange couplings provide an excellent description of the inelastic neutron scattering spectra of the parent compounds, as well as explaining that the magnetic excitations in Sr_{2}CuTe_{0.5}W_{0.5}O_{6} emerge from bond-disordered exchange couplings. Our results demonstrate the crucial role of the nonmagnetic cations in exchange interactions paving the way to further explore quantum spin liquid phases in bond-disordered materials.

8.
J Phys Condens Matter ; 32(37): 374007, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32050188

RESUMEN

It is well established that in the low-temperature limit, the two-dimensional quantum Heisenberg antiferromagnet on a square lattice (2DQHAFSL) exhibits an anomaly in its spectrum at short-wavelengths on the zone-boundary. In the vicinity of the [Formula: see text] point the pole in the one-magnon response exhibits a downward dispersion, is heavily damped and attenuated, giving way to an isotropic continuum of excitations extending to high energies. The origin of the anomaly and the presence of the continuum are of current theoretical interest, with suggestions focused around the idea that the latter evidences the existence of spinons in a two-dimensional system. Here we present the results of neutron inelastic scattering experiments and Quantum Monte Carlo calculations on the metallo-organic compound Cu(DCOO)[Formula: see text]D2O (CFTD), an excellent physical realisation of the 2DQHAFSL, designed to investigate how the anomaly at [Formula: see text] evolves up to finite temperatures [Formula: see text]. Our data reveal that on warming the anomaly survives the loss of long-range, three-dimensional order, and that it is thus a robust feature of the two-dimensional system. With further increase of temperature the zone-boundary response gradually softens and broadens, washing out the [Formula: see text] anomaly. This is confirmed by a comparison of our data with the results of finite-temperature Quantum Monte Carlo simulations where the two are found to be in good accord. In the vicinity of the antiferromagnetic zone centre, there was no significant softening of the magnetic excitations over the range of temperatures investigated.

9.
Nat Commun ; 10(1): 786, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30783084

RESUMEN

The transition temperature Tc of unconventional superconductivity is often tunable. For a monolayer of FeSe, for example, the sweet spot is uniquely bound to titanium-oxide substrates. By contrast for La2-xSrxCuO4 thin films, such substrates are sub-optimal and the highest Tc is instead obtained using LaSrAlO4. An outstanding challenge is thus to understand the optimal conditions for superconductivity in thin films: which microscopic parameters drive the change in Tc and how can we tune them? Here we demonstrate, by a combination of x-ray absorption and resonant inelastic x-ray scattering spectroscopy, how the Coulomb and magnetic-exchange interaction of La2CuO4 thin films can be enhanced by compressive strain. Our experiments and theoretical calculations establish that the substrate producing the largest Tc under doping also generates the largest nearest neighbour hopping integral, Coulomb and magnetic-exchange interaction. We hence suggest optimising the parent Mott state as a strategy for enhancing the superconducting transition temperature in cuprates.

10.
Nat Commun ; 9(1): 5394, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30568161

RESUMEN

One-dimensional (1D) magnetic insulators have attracted significant interest as a platform for studying quasiparticle fractionalization, quantum criticality, and emergent phenomena. The spin-1/2 Heisenberg chain with antiferromagnetic nearest neighbour interactions is an important reference system; its elementary magnetic excitations are spin-1/2 quasiparticles called spinons that are created in even numbers. However, while the excitation continuum associated with two-spinon states is routinely observed, the study of four-spinon and higher multi-spinon states is an open area of research. Here we show that four-spinon excitations can be accessed directly in Sr2CuO3 using resonant inelastic x-ray scattering (RIXS) in a region of phase space clearly separated from the two-spinon continuum. Our finding is made possible by the fundamental differences in the correlation function probed by RIXS in comparison to other probes. This advance holds promise as a tool in the search for novel quantum states and quantum spin liquids.

11.
Sci Adv ; 4(11): eaau3402, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30456302

RESUMEN

Multiple-q spin order, i.e., a spin texture characterized by a multiple number of coexisting magnetic modulation vectors q, has recently attracted attention as a source of nontrivial magnetic topology and associated emergent phenomena. One typical example is the triple-q skyrmion lattice state stabilized by Dzyaloshinskii-Moriya interactions in noncentrosymmetric magnets, while the emergence of various multiple-q states of different origins is expected according to the latest theories. Here, we investigated the magnetic structure of the itinerant polar hexagonal magnet Y3Co8Sn4, in which several distinctive mechanisms favoring multiple-q states are allowed to become active. Small-angle neutron-scattering experiments suggest the formation of incommensurate triple-q magnetic order with an in-plane vortex-like spin texture, which can be most consistently explained in terms of the novel four-spin interaction mechanism inherent to itinerant magnets. The present results suggest a new route to realizing exotic multiple-q orders and that itinerant hexagonal magnets, including the R 3 M 8Sn4 family with wide chemical tunability, can be a unique material platform to explore their rich phase diagrams.

12.
Sci Rep ; 8(1): 10466, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29992965

RESUMEN

Magnetic skyrmions are topologically protected spin-whirls currently considered as promising for use in ultra-dense memory devices. Towards achieving this goal, exploration of the skyrmion phase response and under external stimuli is urgently required. Here we show experimentally, and explain theoretically, that in the magnetoelectric insulator Cu2OSeO3 the skyrmion phase can expand and shrink significantly depending on the polarity of a moderate applied electric field (few V/µm). The theory we develop incorporates fluctuations around the mean-field that clarifies precisely how the electric field provides direct control over the free energy difference between the skyrmion and the surrounding conical phase. The quantitative agreement between theory and experiment provides a solid foundation for the development of skyrmionic applications based on magnetoelectric coupling.

13.
Rev Sci Instrum ; 89(4): 046101, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29716319

RESUMEN

We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO4 with S = 1/2 (Mo5+) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

14.
Phys Rev Lett ; 120(11): 117201, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29601740

RESUMEN

We demonstrate that light-induced heat pulses of different duration and energy can write Skyrmions in a broad range of temperatures and magnetic field in FeGe. Using a combination of camera-rate and pump-probe cryo-Lorentz transmission electron microscopy, we directly resolve the spatiotemporal evolution of the magnetization ensuing optical excitation. The Skyrmion lattice was found to maintain its structural properties during the laser-induced demagnetization, and its recovery to the initial state happened in the sub-µs to µs range, depending on the cooling rate of the system.

15.
Phys Rev Lett ; 120(3): 037203, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29400522

RESUMEN

The real-space spin texture and the relevant magnetic parameters were investigated for an easy-axis noncentrosymmetric ferromagnet Cr_{11}Ge_{19} with Nowotny chimney ladder structure. Using Lorentz transmission electron microscopy, we report the formation of bi-Skyrmions, i.e., pairs of spin vortices with opposite magnetic helicities. The quantitative evaluation of the magnetocrystalline anisotropy and Dzyaloshinskii-Moriya interaction (DMI) proves that the magnetic dipolar interaction plays a more important role than the DMI on the observed bi-Skyrmion formation. Notably, the critical magnetic field value required for the formation of bi-Skyrmions turned out to be extremely small in this system, which is ascribed to strong easy-axis anisotropy associated with the characteristic helix crystal structure. The family of Nowotny chimney ladder compounds may offer a unique material platform where two distinctive Skyrmion formation mechanisms favoring different topological spin textures can become simultaneously active.

16.
Sci Rep ; 7(1): 17157, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29214992

RESUMEN

A combined resistivity and hard x-ray diffraction study of superconductivity and charge ordering in Ir Ir1-xPtxTe2, as a function of Pt substitution and externally applied hydrostatic pressure, is presented. Experiments are focused on samples near the critical composition x c ~ 0.045 where competition and switching between charge order and superconductivity is established. We show that charge order as a function of pressure in Ir0.95Pt0.05Te2 is preempted - and hence triggered - by a structural transition. Charge ordering appears uniaxially along the short crystallographic (1, 0, 1) domain axis with a (1/5, 0, 1/5) modulation. Based on these results we draw a charge-order phase diagram and discuss the relation between stripe ordering and superconductivity.

17.
Nat Commun ; 8: 15176, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28474681

RESUMEN

A paradigmatic case of multi-band Mott physics including spin-orbit and Hund's coupling is realized in Ca2RuO4. Progress in understanding the nature of this Mott insulating phase has been impeded by the lack of knowledge about the low-energy electronic structure. Here we provide-using angle-resolved photoemission electron spectroscopy-the band structure of the paramagnetic insulating phase of Ca2RuO4 and show how it features several distinct energy scales. Comparison to a simple analysis of atomic multiplets provides a quantitative estimate of the Hund's coupling J=0.4 eV. Furthermore, the experimental spectra are in good agreement with electronic structure calculations performed with Dynamical Mean-Field Theory. The crystal field stabilization of the dxy orbital due to c-axis contraction is shown to be essential to explain the insulating phase. These results underscore the importance of multi-band physics, Coulomb interaction and Hund's coupling that together generate the Mott insulating state of Ca2RuO4.

18.
Phys Rev Lett ; 117(23): 237203, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27982654

RESUMEN

Sr_{2}CuTeO_{6} presents an opportunity for exploring low-dimensional magnetism on a square lattice of S=1/2 Cu^{2+} ions. We employ ab initio multireference configuration interaction calculations to unravel the Cu^{2+} electronic structure and to evaluate exchange interactions in Sr_{2}CuTeO_{6}. The latter results are validated by inelastic neutron scattering using linear spin-wave theory and series-expansion corrections for quantum effects to extract true coupling parameters. Using this methodology, which is quite general, we demonstrate that Sr_{2}CuTeO_{6} is an almost ideal realization of a nearest-neighbor Heisenberg antiferromagnet but with relatively weak coupling of 7.18(5) meV.

19.
Nat Commun ; 7: 13039, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27698426

RESUMEN

In vortex-like spin arrangements, multiple spins can combine into emergent multipole moments. Such multipole moments have broken space-inversion and time-reversal symmetries, and can therefore exhibit linear magnetoelectric (ME) activity. Three types of such multipole moments are known: toroidal; monopole; and quadrupole moments. So far, however, the ME activity of these multipole moments has only been established experimentally for the toroidal moment. Here we propose a magnetic square cupola cluster, in which four corner-sharing square-coordinated metal-ligand fragments form a noncoplanar buckled structure, as a promising structural unit that carries an ME-active multipole moment. We substantiate this idea by observing clear magnetodielectric signals associated with an antiferroic ME-active magnetic quadrupole order in the real material Ba(TiO)Cu4(PO4)4. The present result serves as a useful guide for exploring and designing new ME-active materials based on vortex-like spin arrangements.

20.
Nat Mater ; 15(12): 1237-1242, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27643728

RESUMEN

Skyrmions, topologically protected nanometric spin vortices, are being investigated extensively in various magnets. Among them, many structurally chiral cubic magnets host the triangular-lattice skyrmion crystal (SkX) as the thermodynamic equilibrium state. However, this state exists only in a narrow temperature and magnetic-field region just below the magnetic transition temperature Tc, while a helical or conical magnetic state prevails at lower temperatures. Here we describe that for a room-temperature skyrmion material, ß-Mn-type Co 8Zn 8Mn 4, a field-cooling via the equilibrium SkX state can suppress the transition to the helical or conical state, instead realizing robust metastable SkX states that survive over a very wide temperature and magnetic-field region. Furthermore, the lattice form of the metastable SkX is found to undergo reversible transitions between a conventional triangular lattice and a novel square lattice upon varying the temperature and magnetic field. These findings exemplify the topological robustness of the once-created skyrmions, and establish metastable skyrmion phases as a fertile ground for technological applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...